导数和积分表
\begin{aligned}
1.&f(x)=C,f'(x)=0\ \end{aligned} \begin{aligned} 2.&f(x)=x^n,f'(x)=nx^{n-1}\ \end{aligned} \begin{aligned} 3.&f(x)=a^x,f'(x)=ln a\times a^x\ \end{aligned} \begin{aligned} 4.&f(x)=e^x,f'(x)=e^x\ \end{aligned} \begin{aligned} 5.&f(x)=log_ax,f'(x)=\frac{1}{x\times ln a}\ &(f(x)=ln x,f'(x)=\frac{1}{x})\ \end{aligned} \begin{aligned} 6.&f(x)=sin x,f'(x)=cos x\ \end{aligned} \begin{aligned} 7.&f(x)=cos x,f'(x)=-sin x\ \end{aligned} \begin{aligned} 8.&f(x)=tan x,f'(x)=\frac{1}{cos^2x}\ \end{aligned} \begin{aligned} 9.&f(x)=cot x,f'(x)=-\frac{1}{sin^2x}\ \end{aligned} \begin{aligned} 10.&f(x)=g[h(x)],f'(x)=g'[h(x)]h'(x)\ \end{aligned} \begin{aligned} 11.&f(x)=g(x)h(x),f'(x)=g'(x)h(x)+g(x)h'(x)\ \end{aligned} \begin{aligned} 12.&f(x)=\frac{g(x)}{h(x)},f'(x)=\frac{[g'(x)h(x)-g(x)h'(x)]}{h^2(x)}\ \end{aligned}积分
\begin{aligned}
1.&\int k dx=kx+C\ \end{aligned} \begin{aligned} 2.&\int k^\mu dx=\frac{x^{\mu +1}}{\mu +1}+C (\mu \not= -1)\ \end{aligned} \begin{aligned} 3.&\int\frac{dx}{x}=ln|x|+C\ \end{aligned} \begin{aligned} 4.&\int\frac{dx}{1+x^2}=arctan x+C\ \end{aligned} \begin{aligned} 5.&\int\frac{dx}{sqrt{1+x^2}}=arcsin x+C\ \end{aligned} \begin{aligned} 6.&\int cos x dx=sin x+C\ \end{aligned} \begin{aligned} 7.&\int sin x dx=-cos x+C\ \end{aligned} \begin{aligned} 8.&\int \frac{dx}{cos^2x}=\int sec^2xdx=tan x+C\ \end{aligned} \begin{aligned} 9.&\int \frac{dx}{sin^2x}=\int csc^2xdx=-cot x+C\ \end{aligned} \begin{aligned} 10.&\int sec x tan x dx=sec x+C\ \end{aligned} \begin{aligned} 11.&\int csc x cot x dx=-csc x+C\ \end{aligned} \begin{aligned} 12.&\int e^x dx=e^x+C\ \end{aligned} \begin{aligned} 13.&\int a^x dx=\frac{a^x}{ln a}+C\ \end{aligned}